The VVER 1000 and 1200 prestressing system Presentation

Jean Lucien MONGAUZE FREYSSINET INTERNATIONAL

Part 1 : The FREYSSINET Group Part 2 : Prestressing for nuclear vessels 2.1 Bonded prestressing 2.2 Unbonded prestressing 2.3 Summary of different solutions

Part 1 :

The FREYSSINET Group

The First name of FREYSSINET & Cie was STUP. This company was created in 1943, by Eugène FREYSSINET who invented prestressing in 1928.

This company was named FREYSSINET in 1976

To day Freyssinet is a 100% subsidiary of the VINCI Group which is the largest construction group in the world with a 2009 turnover of

33 500 Millions Euros

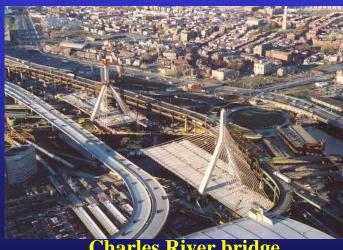
Eugéne FREYSSINET (1879 – 1962)

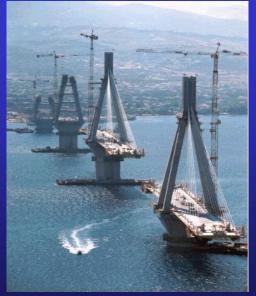
FREYSSINET, Construction high tech company :

Construction

Repairs - maintenance

WORKS<u>Cable structure : stay cable</u>


Bridges : more than 80 bridges in the last 10 years 70% of the world market

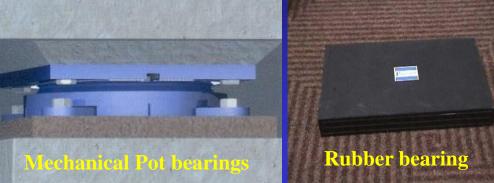


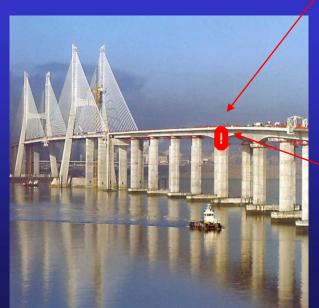
Cape girardeau (USA)

Normandie Bridge (France)

Charles River bridge BOSTON (USA)

Rion Antirion Bridge (Grece)


Cooper river bridge (USA)


WORKS **Bridges products**

Bridges Expansion joints

Bridges Bearings

Para-sismic devices

Construction

WORKS

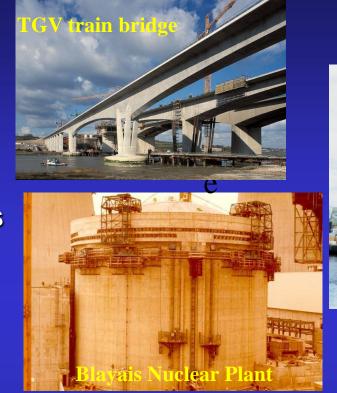
Construction

Construction methods

Freyssinet developped efficient and cost saving construction methods as well as their relazted activities :

- Heavy lifting/ jacking
- Incremental launching
- Deconstruction
- Precasting
- Casting-in-situ

WORKS HEAVY LIFTING and JACKING



Construction

WORKS Prestressing

- Bridges
- Offshore platforms
- Nuclear reactors
- LNG tanks
- Silos
- Buildings

Silos and LNG tanks

Construction Freyssinet, world leader for prestressing

European Parlement Building

PRESTRESSED CONCRETE IN NUCLEAR POWER STATIONS LIST OF REFERENCES

TOTAL = 143 PRESSURED VESSELS

70 MN UP IT USA 34 anis 900 MW 1250 WA FRANCE 60 1100 priv unit 1600MW unit 1000 U.K. units witt 200 M/V unit 700 M/W CHINE 32 unix \$00 M/W TAUWAN unit 1000.WW unis units 1600MW tanih t INDIA BELGIUM 5 \$00 MW units SOUTH KOREA units. ank. \$50 MIN SPAIN 3 \$50 M/N units 100 IRAN stopped under construction SOUTH AFRICA and a \$50 MIN RUSSIA units 125 MIN unii PARISTAN 300 M/W ank FINLAND units

Freyssinet has supplied the prestressing system for <u>143</u> nuclear containment vessels in the world

750 M.W

\$30 MIN

850 MR

1303 8

550 MB

320 MW

1000 00

900 Mile

\$30 MIN

100044

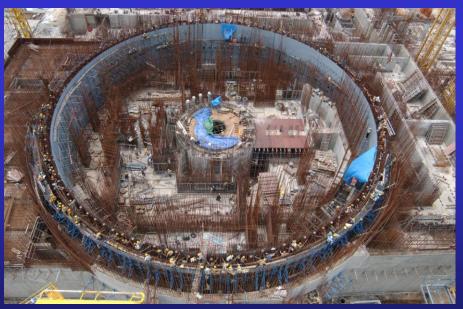
100044

Daya-Bay,Ling-Ao,Hong-Ya-He,Ning-De, Yiang-Jiang, Fang-Chen-Gang : 22 NPP 900Mw PWR (China)

CHINA - Qinshan candu Phase III 2 PHWR x 700Mw

Civaux NPP (France) 2 x 1500 Mw N4 Type

TIANWAN(ex Lianyungang) NPP(China) 2 x 1000Mw VVER 1000


500 Anc 55 C 15 2700tons strand T 15.7

KUDANKULAM NPP (India) 2 VVER 1000Mw

•514 Anchorages 55 C 15
•2750tons of HPDE coated strands T 15.7

OLKILUOTO N°3 (Finland) EPR 1600Mw

•540 Anchorages 55 C 15
•31 000lm of ducts 160mm
•2250Tons of strands T15.7 class 1860Mpa

FLAMANVILLE 3 EPR (France) 1 EPR 1600Mw

•540 Anchorages 55 C 15
•31 000lm of ducts 160mm
•2250Tons of strands T15.7 class 1860Mpa

The 55 C 15 Freyssinet prestressing system has been used for :

2 vessels VVER 1000 at Tianwan in China

2 vessels VVER 1000 at Kudankulam in India

The OL3 EPR in Finland

The Flamanville EPR in France

WORKS

Repairs et maintenance

Repair works: a fast growing activity

Structural reinforcing

Material treatment

Protection

Assessment

Repair of historical monuments

Fiber carbon

Additional Prestressing

Shotcrete

KUWAIT – Bubiyan Bridge

VIETNAM - Pont de Saigon

KOSOVO : Mitrovica Bridge

EUROPE 1 Radio Building

Part 2 :

Prestressing for nuclear vessels 2. 1 Bonded prestressing

1 PROCESS:

- 1. The ducts and the embedded parts of anchorages are placed into the formworks during the containment construction
- 2. Once the containment is fully concreted, the strands are threaded into the ducts and tensioned .
- **3.** Once tensioned , cement grout are injected into the tendons.

2 REFERENCES:

The bonded pretressing has been used for all the 58 french nuclear containments as well as for all the 30 chinese nuclear containments and also for the 4 EPR containments under construction in Finland, France and China.

Selection of the prestressing

A prestressingns tendon is made of:

- •a duct
- •a tendon
- •two anchors

Placing of 55 T 15 ducts in prefabricated reinforcement

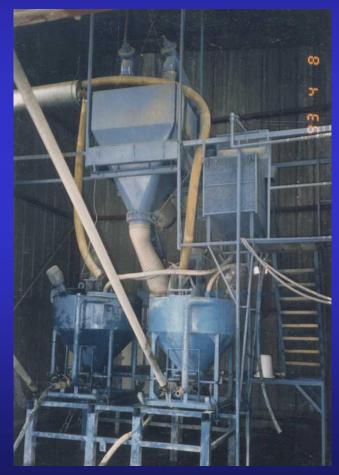
Each component must de chosen according to the designer requirements

LFC (Low friction) Flexible corrugated sheet for horizontal tendons

Rigid steel pipe for vertical tendons

Tendon tensioning

55 T 16 Horizontal tendons tensioning



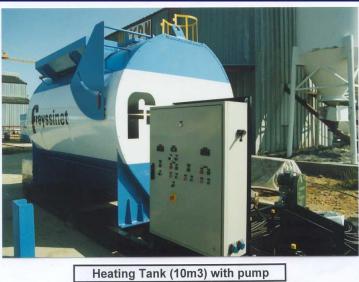
55 T 16 Vertical tendon tensioning

Cement grout fabrication

Mixing plant

Remixing tank

Turbo mixer



Dynamometers

• Tendons could be fitted with dynamometers

•These tendons are grouted with petroleum wax

2.2 Unbonded prestressing for VVER 1000 and 1200 vessels

with greased & HPDE coated strands

1 PROCESS:

- 1. The ducts and the embedded parts of anchorages are placed into the formworks during the containment construction
- 2. During the containment construction, strands are threaded into the ducts and cement grout is injected between strands .
- **3.** Once the containment is fully concreted, the strands are tensioned .
- **2 REFERENCES:**

This kind of unbonded pretressing is used for the Kudankulam NPP under construction in India, for the Kalinine unit 4 and for the replacement of wires tendons on Novovoronej 5 and Kalinine 1.

This prestressing system is used for the wires tendons replacement on VVER 1000 first generation as well for the Kalinine 4

96 Helicoïdal tendons 46 C 15

Average lenght = 177ml

Figure 2 : câblage VVER hélicoïdal du cylindre de l'enceinte (une seule nappe, soit un câble sur deux, est représentée ici)

36 looped dôme tendons 46 C 15 Average lenght = 108ml

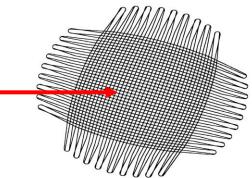
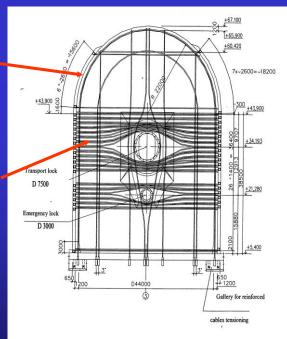


Figure 3 : câblage VVER en U du dôme de l'enceinte



11/24

This prestressing system is used for the two VVER 1200MW containments which are under construction for the Kudankulam Nuclear plant in India .

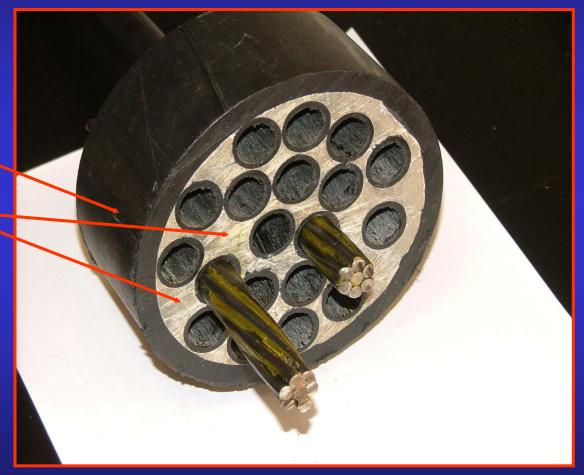
60 inverted U tendons 55 C 15-

68 horizontal looped tendons 55 C 15



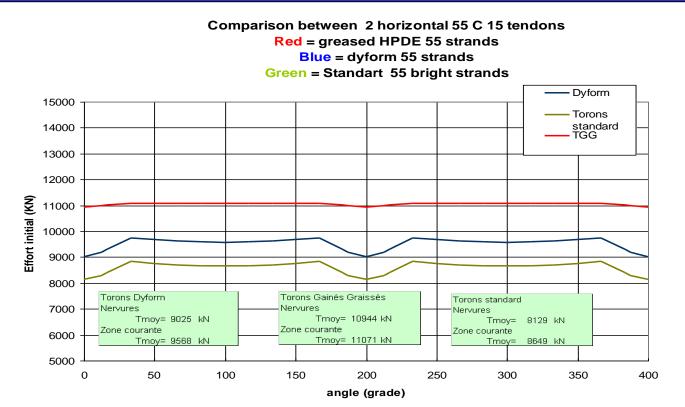
Tendons are made of several greased and HPDE coated strands

The strand itself is a bright strand, which is greased and HPDE coated



FREYSSINET

The HPDE strands are placed one by one into a duct


Cement grout is injected between the strands. These remain free to move into their individual sheet

The main advantages of this system for nuclear containments are:

•An **increased and more efficient** spreading of prestressing thanks to a very low friction coefficient (f= 0.05 instead of 0.18 for bright strands)

Strands Threading

Strands are threaded by pulling with winches and shuttle

9/24

Mock up for helicoïdal tendons

Mock up for inverted U tendons

3.3) Anchor-blocks and wedges :

FREYSSINET is manufacturing its own anchorages in its factory **PPC** located in France near Chalons/Saone

Wedges manufacturing

Anchors blocks drilling

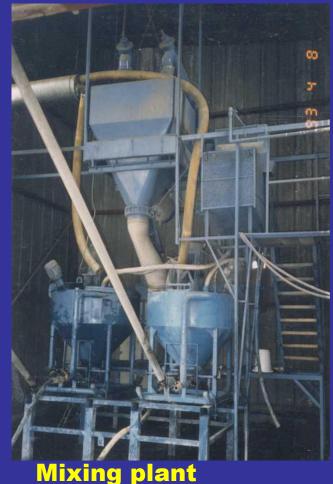
TESTING:

FREYSSINET has its own testing department where Static and **Dynamic tests and miscelaneous test on anchorages components are** carried out

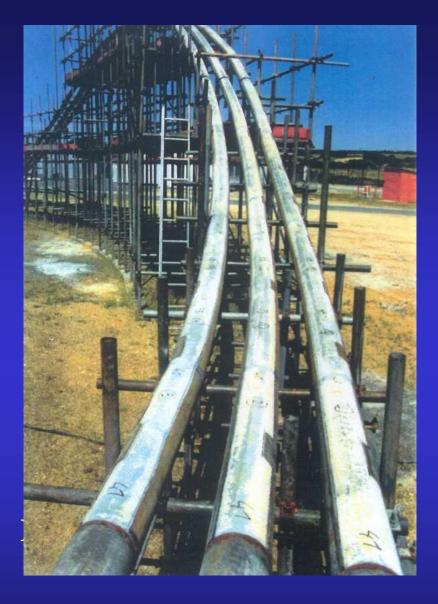
FREYSSINET 2000Tons Bed test

Tendons are tensioned simultaneoustly at both ends

55 T 16 Inverted U tendon tensioning


FREYSSINET

Retarded-remixed cement grout manufacturing: The cement grout is manufactured in a grout manufacturing plant


Remixing tank

Turbo mixer

Injection mock-up

9/24

2.3 Summary of the different solutions

ADVANTAGES

Bonded Prestressing	Unbonded Prestressing
	(Greased HPDE cStrands)
1. Ducts sizes smaller	1. Measurable
2. Strands cheaper	2. Restresseable
	3. Detensionable
	4. Replacable
	5. Planning shorter
	6. Corrosion protection very high
	7. Friction coefficient lower (f=0,05)
	8. Injection easier
	9. Equitenion not necessary
	10. Save tendons quantity
	11. Short planning for tendons
	installation

INCONVENIENTS

	Bonded Prestressing			Unbonded Prestressing (Greased HPDE cStrands)
 1. 2. 3. 4. 5. 6. 7. 8. 	Not Measurable Not Restresseable Not Detensionable Not Replacable Friction coefficient high(f = 0,18) Difficulty for injection Planning for tendons installation longer Necessity to use equitension		1. 2. 3.	Ducts size bigger Strand costly Without internal liner, vessel tightness bad in case of loca

CORROSION PROTECTION LEVEL



COST

Bonded Prestressing	Unbonded Prestressing (Greased HPDE cStrands)
$\overset{\text{Normal}}{\bigstar}$	Normal

CONTROLLABILITY

PLANNING of TENDONS INSTALLATION

Bonded Prestressing	Unbonded Prestressing (Greased HPDE Strands)
9 months	$\stackrel{4 \text{ months}}{\bigstar} \stackrel{\checkmark}{\bigstar} \stackrel{\checkmark}{\bigstar}$

Thank you for your attention

