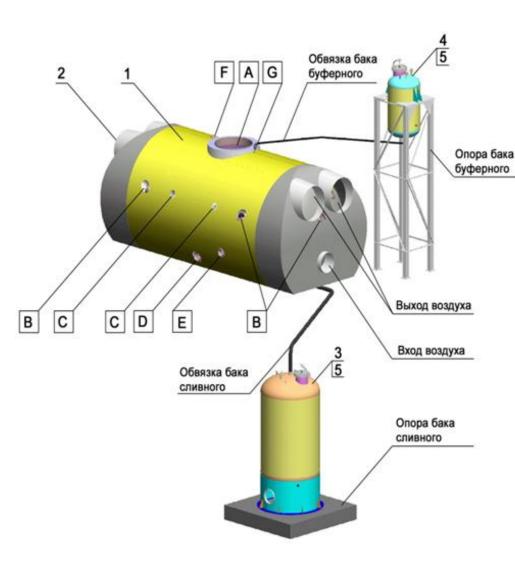


Технология комплексной переработки ТРО низкой и средней степеней активности

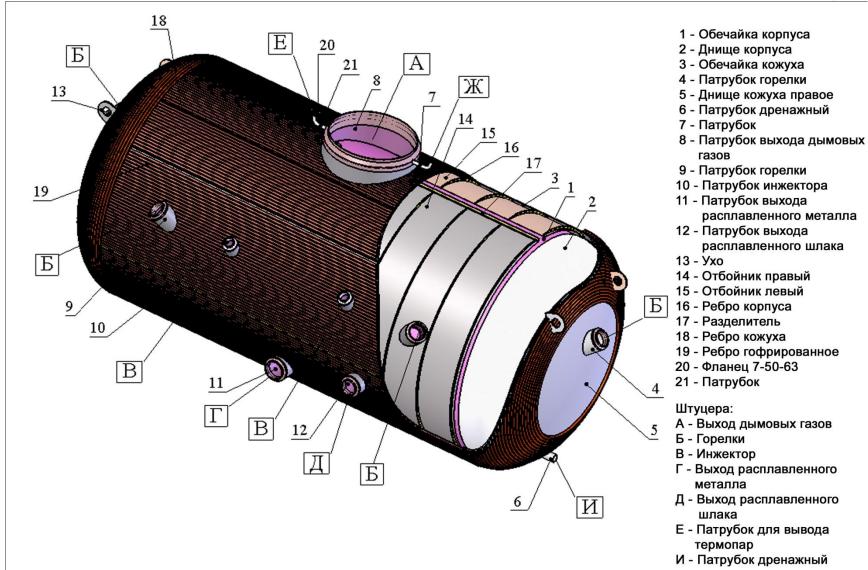
Суть предлагаемого решения

По данным ЦНИИТМАШ, наиболее перспективным способом переработки ТРО, предусматривающим более безопасную, экологически чистую, экономически эффективную переработку ТРО низкого и среднего уровней активности, является пирометаллургический способ.

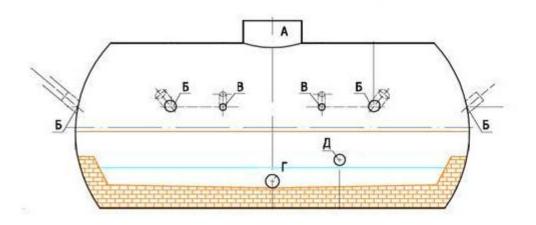

Предлагаются к внедрению инновационная, высокопроизводительная технология комплексной переработки ТРО и высокотемпературный, топливокислородный, герметичный гарнисажный плавильный агрегат «МАГМА», имеющий новейшую систему охлаждения корпуса (аналогичную применяемой в реакторах типа БН).

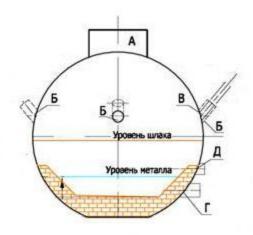
На базе разработанных технологии и агрегата, предлагается реализовать проект строительства регионального предприятия по комплексной переработке ТРО:

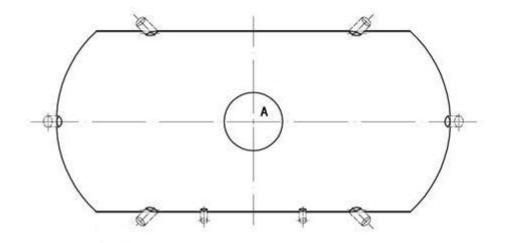
- образующихся от текущей деятельности предприятий атомной отрасли
- ожидаемых от планируемого вывода из эксплуатации объектов атомной отрасли
- находящихся в хранилищах, с целью их разгрузки


Годовая производительность предприятия – до 10 тыс. т

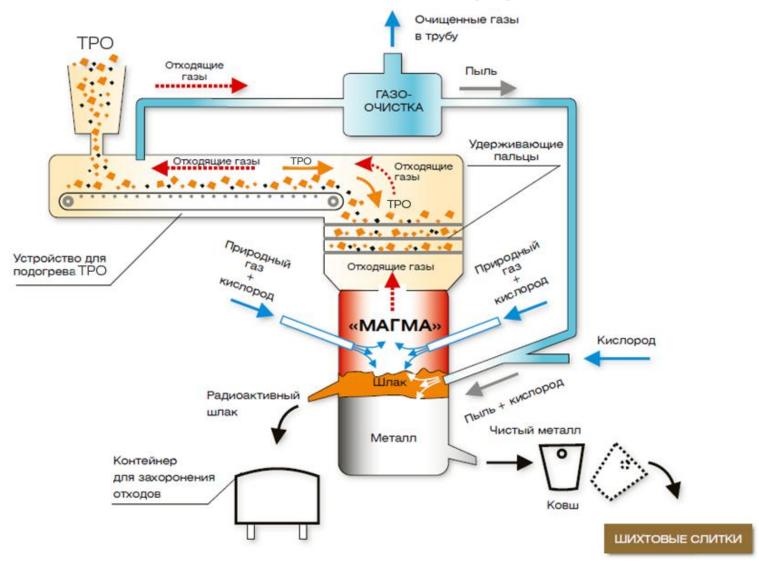
Вид плавильной камеры агрегата «МАГМА»



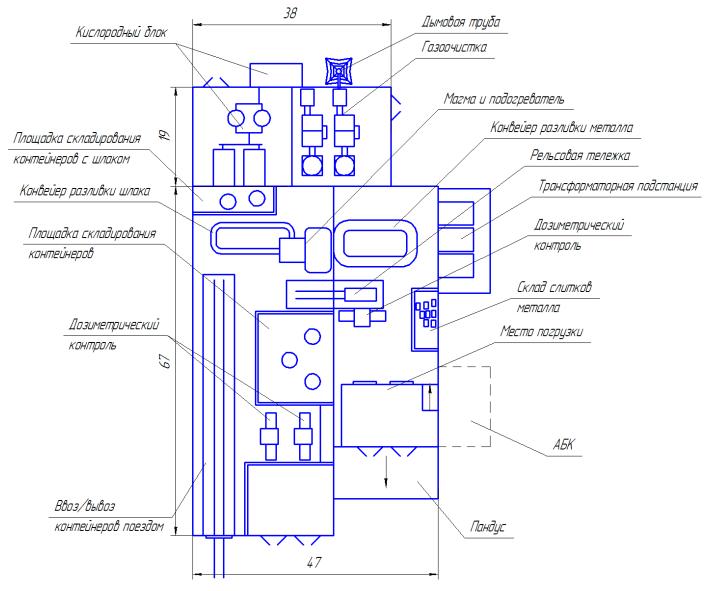

- 1. Корпус плавильного агрегата
- 2. Отверстие для подачи воздуха в систему вторичного охлаждения корпуса плавильного агрегата
- 3. Бак сливной жидкометаллической системы охлаждения корпуса плавильного агрегата
- 4. Бак буферный жидкометаллической системы охлаждения корпуса плавильного агрегата
- 5. Электронагреватели жидкометаллической системы охлаждения корпуса плавильного агрегата
- А. Отверстие для загрузки перерабатываемых ТРО и выхода технологических газов
- В. Отверстие для установки топливокислородной горелки
- С. Отверстие для установки инжектора
- D. Отверстие для выпуска расплавленного металла
- Е. Отверстие для выпуска расплавленного шлака
- F. Патрубок для установки термопары
- G. Патрубок для соединения с баком буферным


Вид плавильной камеры агрегата «МАГМА» без внешнего кожуха

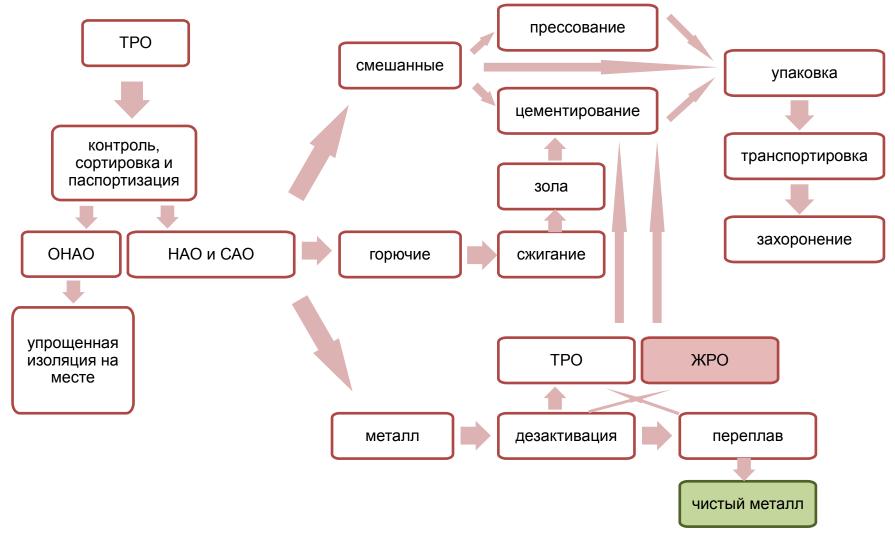
Эскиз плавильной камеры агрегата «МАГМА»

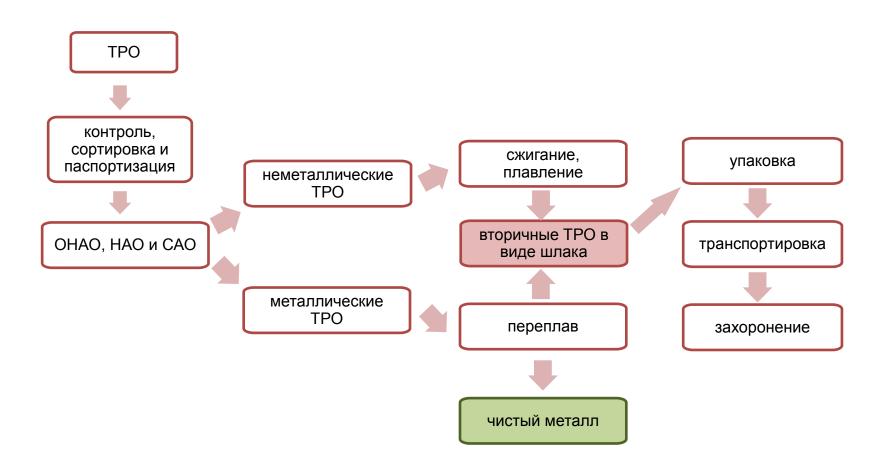


- А отверстие для загрузки шихты и отвода отходящих газов,
- 5 6 отверстий под горелки,
- В 2 отверстия под инжекторы,
- Г отверстие для слива расплавленного металла,
- Д отверстие для слива расплавленного шлака.


Основные характеристики агрегата «МАГМА»

Показатель	Значение	
Вид топлива	Природный газ, уголь, мазут	
Окислитель	Технический кислород	
Температура газовой фазы в свободном пространстве агрегата	1650 – 1850 °C	
Температура шлакового расплава	1550 – 1650 °C	
Температура металла	1350 – 1500 °C	
Материал корпуса агрегата	Нержавеющая сталь	
Охлаждение корпуса агрегата	Первичное – жидкометаллический теплоноситель Вторичное – газообразные азот и воздух	
Футеровка металлической ванны корпуса	Высокоглиноземистые огнеупоры	
Годовая производительность по переработке ТРО	до 10 000 т	


Технологическая схема комплексной переработки ТРО


Схема расположения оборудования в производственном корпусе

Действующая концепция обращения с ТРО низкого и среднего уровней активности

Предлагаемая концепция обращения с ТРО низкого и среднего уровней активности

Основные физико-механические свойства шлака

Свойства	Шлак	Гранит	Серый чугун СЧ 12–28
Плотность, кг/м ³	2 800 – 3 000	2 500	7200
Предел прочности при сжатии, МПа	200 – 500	100 – 300	500
Истираемость, кг/м²	0,5 – 0,7	1–5	-
Водопоглощение, %	0,1 – 0,2	0,1–1	-
Морозостойкость, Мрз (циклы)	более 300	300	-

Сравнительная характеристика способов утилизации МРО

Показатель	Проект «МАГМА»	Существующие предприятия
Способ дезактивации	пирометаллургический	механический, химический, пирометаллургический
Предварительная подготовка МРО	не требуется	требуется (фрагментация, предварительная дезактивация)
Уровень загрязнения MPO, принимаемых на дезактивацию	низкий, средний	низкий
Тип плавильного агрегата	герметичный, топливокислородный, гарнисажный, охлаждение корпуса жидкометаллическим теплоносителем	электрические индукционные и дуговые печи с огнеупорной футеровкой
Характер работы	непрерывный	периодический
Кратность шлака	0,03-0,04	0,04 - 0,05
Производительность, т/год	до 10 000	1 000 - 7 000
Расход на плавление 1 т МРО: природный газ, нм ³ /т ; кислород, нм ³ /т ; электроэнергия, кВт· ч/т	100 185 8,8	- - 700-850
Вид и количество производимых вторичных радиоактивных отходов, к массе переработанных MPO	шлак до 3-4%	шлак до 5% , огнеупоры до 5%, пыль 2%, ЖРО
Ограничения при использовании дезактивированного металла	98 - 99% без ограничений	10 - 65% без ограничений

Возможности разработанной технологии в сравнении с существующими

- 1. Переработка неметаллических ТРО низкого и среднего уровней активности:
 - Сжигание (пластикат, пленки, кабельная продукция, фильтры систем спецвентиляции, ионообменные смолы)
 - Плавление (теплоизоляция, строительный мусор, стекло, загрязненная радионуклидами почва)
- 2. Переработка металлических TPO низкого и среднего уровней активности, имеющих поверхностную и наведенную радиации:
 - переплав и глубокая дезактивация (механическое оборудование, отходы легированной и углеродистой стали) без предварительных операций тщательной фрагментации и дезактивации

Эффективность применения разработанной технологии

- 1. Минимизация негативного воздействия радиации на производственный персонал
- 2. Упрощение технологического процесса переработки ТРО, в связи с сокращением операций по обращению с ТРО (одностадийный процесс)
- 3. Экономическая эффективность и экологическая безопасность процесса переработки ТРО
- 4. Уменьшение объема неметаллических ТРО до 150 раз (при сжигании), до 30 раз (при плавлении)
- 5. Возвращение в хозяйственный оборот дезактивированного металла
- 6. Получение вторичных ТРО в виде кислого шлака, имеющего высокие механические свойства, стойкого к воздействию агрессивных сред, исключающего вымывание радионуклидов и попадание их в окружающую среду и удобного для последующего безопасного долговременного захоронения

Референтность использования подобных технологий и элементов агрегата

- 1. Переработка неметаллических ТРО:
 - плавление (теплоизоляционные материалы) электродуговая печь с 2002г. эксплуатируется на Курской АЭС, на 2011г. переработано 6500 м³ ТРО (порядка 730 м³ в год)

Справочно: по состоянию на 2011 г. на АЭС накоплено порядка 20 000 м³ теплоизоляционных материалов, с ежегодным образованием до 1 500 м³.

- 2. Переработка металлических ТРО:
 - переплав металлических радиоактивных отходов низкой степени активности 3AO «Экомет-С» (индукционная печь)
- 3. Способ охлаждения корпуса агрегата «МАГМА» разработан с использованием опыта российской атомной энергетики по разработке систем охлаждения корпусов реакторов на быстрых нейтронах (БН-600, действующий более 30 лет на Белоярской АЭС, строящийся 4-й энергоблок БН-800)
- 4. Использование собственного опыта разработки и производства арматуры для контура жидкометаллического охлаждения корпуса реактора БН-800

Область применения разработанных технологии и плавильного агрегата

Основные экономические показатели

Показатель	Ед. изм.	Величина
Производительность по ТРО	т/год	10 000
Стоимость переработки	руб./т	128 741
Рентабельность по чистой прибыли	%	54%
Стоимость проекта (все стадии)	тыс. руб.	1 208 308
NPV	%	3 398 900
IRR	%	47,4%
Период окупаемости (простой)	лет	3,9

Участники проекта

- 1. ОАО «Головной институт «ВНИПИЭТ» (Санкт-Петербург)
- 2. ОАО «ОКБМ АФРИКАНТОВ» (Нижний Новгород)
- 3. ГНЦ РФ ФЭИ им. А.И. Лейпунского (Обнинск)
- 4. ЗАО «НПО «ГИДРОПРЕСС» (Подольск)
- 5. ЗАО «НПФ «ЦКБА» (Санкт-Петербург)
- 6. ООО Промышленная компания «Технология металлов» (Челябинск)
- 7. ООО НТП «АКОНТ» (Челябинск)
- 8. Институт промышленной экологии УрО РАН
- 9. ООО «УК «Уралэнергострой» (Екатеринбург)

Заключение

Реализация проекта позволит экологически безопасно, экономически эффективно, на современном техническом уровне решать задачи, связанные с обращением ТРО низкой и средней степеней активности в атомной отрасли

195027, Россия, Санкт-Петербург

пр. Шаумяна, д. 4/1

телефон: +7 (812) 6-111-000 факс: +7 (812) 458-72-22

e-mail: info@ckba.ru