КОМПОЗИЦИОННЫЕ МАТЕРИАЛЫ ДЛЯ СТРОИТЕЛЬСТВА ПРОИЗВОДСТВА ЗАО «ХК КОМПОЗИТ»

Структура производственных мощностей холдинга по выпуску углеродных волокнистых материалов в РФ

ООО «CHB», г. Саратов ООО «CHB» является единственным российским производителем

полиакрилонитрильных жгутов – основного сырья для производства углеродных волокон. Штат сотрудников завода - 460 человек, Мощность производства:

- 920 т/год технического ПАН-жгутика.

ООО «Аргон», Саратовская область, г. Балаково.
Крупнейший в России производитель углеродных

волокон. Производственные мощности завода позволяют выпускать широкий спектр углеродных нитей, лент и тканей. Штат сотрудников

завода -487человек. Мощность производства:

по среднепрочным УВ — 510,0 т/год; по высокомодульным УВ — 24,0 т/год.

Госкорпорация «Росатом»

ООО «Завод углеродных композиционных материалов», г.Челябинск. Завод специализируется на выпуске

высокомодульных углеродных волокон и углерод-углеродных композиционных материалов.

Штат сотрудников завода – 256 человек.

Мощность производства - 70 т/год.

Нанотехнологический центр композитов России

КОМПОЗИТ

Управляющая компания, генеральный директор Меламед Леонид Борисович

ЗАО «Препрег-СКМ», г. Климовск – опытная площадка (до 40 т/год), г. Москва – промышленная площадка (до 2500 т/год).

Предприятие специализируется на выпуске препрегов и композиционных материалов.

Углеродные волокна - мировая практика применения

По сравнению с обычными конструкционными материалами (алюминием, сталью и др.) композиционные материалы на основе УВ (углепластики) обладают экстремально высокими характеристиками – прочностью, сопротивлением усталости, модулем упругости, химической и термической стойкостью, в разы превышающими аналогичные показатели стали, при существенно меньшей массе.

Фибра FibARM в асфальте и бетоне

Фибра — мелкодисперсное волокно, выпускается из волокон 3-х типов: на основе специального ПАН-волокна, ПАН-окисленного волокна и углеродного волокна. Используется в качестве армирующей добавки в цементные, бетонные, пенобетонные и асфальтобетонные смеси.

Применение фибры позволяет:

- уменьшить образование трещин и повышает качество поверхности бетона;
- повысить устойчивость асфальтобетона к воздействию антиобледеняющих солей, к проникновению воды и химических веществ;
- повысить прочностные свойства асфальтобетона;
- повысить ударную вязкость асфальтобетона.

Виды используемых фибр

Вид фибры	Физ-мех характеристики			Область применен	Дозиро вка,	Стоимость фибры	Преимущества	Недостатки
	Плот ность, г/см ³	Прочность на растяжени е, МПа	Модуль упругости, ГПА	ия	кг/м ³	руб/кг // удорожани е м ³ бетона		
Стальная	7,8	600-3150	190-210	Тяжельій бетон, ССС	20 – 100	30 – 60 / / 600 – 6000	Частично или полностью заменяет стальной каркас, Широкая доступность, Наличие нормативных документов и опыта применения	Высокая цена, Ограниченность применения, Относительно низкая коррозионная стойкость
Стеклянна я	2,6	1500- 2100	7-8	Тяжельій бетон, легкий бетон, торкрет,ССС	1 - 10	60 – 90 / /60 – 900	Частично заменяет стальной каркас, Доступность, Наличие нормативных документов и применения	Низкий модуль упругости, Большинство стекол растворяется в щелочах, из-за этого требует выпуска щелочестойкого стекла
Полипроп иленовая	0,9	400-700	3,5-8	Тяжельій бетон, легкий бетон, торкрет,ССС	0,2 - 3	120 – 160 / /24 – 480	Доступность, Относительно низкая стоимость, Широкие возможности применения	Относительно низкие прочностные показатели
ПАН фибра	1,2	1800- 3100	3-10	Тяжельій бетон, легкий бетон, торкрет,ССС	0,2 - 3	180 – 220 / /36 – 660	Широкие возможности применения, коррозионная стойкость	Низкая доступность ограничивала широкое применение
УВ фибра	1,7	200-3500	120-370	Тяжелый бетон, легкий бетон, торкрет,ССС	0,2 - 3	340 – 380 / /64 – 1140	Широкие возможности применения, коррозионная стойкость, стойкость к агрессивным средам	Низкая доступность и относительно высокая цена ограничивает широкое применение

Нормативная документация

BCH 56-97

ПРОЕКТИРОВАНИЕ И ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕХНОЛОГИЙ ПРОИЗВОДСТВА ФИБРОБЕТОННЫХ КОНСТРУКЦИЙ, Москва – 1997

СНиП 52-01-2003 «Бетонные и железобетонные конструкции»

Фибробетон рекомендуется для изготовления конструкций, в которых могут быть наиболее эффектно использованы следующие его технические преимущества по сравнению с бетоном и железобетоном:

- повышенные трещиностойкость, ударная вязкость, износостойкость, морозостойкость и атмосферостойкость;
- возможность использования более эффективных конструктивных решений, чем при обычном армировании, например: применение тонкостенных конструкций, конструкций без стержневой или сетчатой распределительной и поперечной арматуры и др.;
- возможность снижения или полного исключения расхода стальной арматуры, например, в конструкциях с экономической ответственностью;
- снижение трудозатрат и энергозатрат на арматурные работы, повышение степени механизации и автоматизации при производстве фибробетонных конструкций, например, сборных тонкостенных оболочек, складок, ребристых плит покрытий и перекрытий, дорожных покрытий, монолитных и сборных полов промышленных и общественных зданий, конструкций несъемной опалубки и др.;
- возможность применения новых, более производительных приемов формования армированных конструкций, например, пневмонабрызга, прогиба свежеотформованных листовых изделий и др.

Применение углефибробетона в строительстве.

Капитальное строительство.

Реакторные отделения атомных электростанций

При производстве полов под производственные помещения

Подземные сооружения

Углепластиковая арматура FibARM

Углепластиковая арматура

Рисунок 1. Композитные базальтопластиковые и углепластиковые стержни с адгезионным покрытием

Углепластиковая арматура представляет собой композитный стержень, который состоит из основы в виде углеродного волокна и связующего: синтетической смолы.

- \checkmark Ø 2,5 ÷ 32,0 мм
- ✓ l = до 12 метров
- ✓ различное финишное покрытие (песок)
 - Прочность на разрыв до 5 раз выше прочностных характеристик стальной арматуры класса AIII. Показатель предела прочности металлической арматуры 390 МПа, композитной не менее 2000 МПа.
 - Углеродная арматура не подвержена коррозии
 - Стойкая к кислотам, к морской воде.
 - Углеродная арматура имеет низкий коэффициент теплопроводности
 - Не теряет своих прочностных свойств при воздействии сверхнизких температур.
 - Легче металлической арматуры в 10 раз
 - Долговечность в среде бетонов
 - Прогноз долговечности на срок > 75 лет

Коррозия стальной арматуры

Одна из главных причин разрушения железобетонных конструкций

- ✓ ежегодные потери \$57 млрд.* (Федеральное дорожное агентство США)
- ✓ в России проблема недооценена, т.к. не проводились исследования, позволяющие оценить масштабы ежегодных потерь

Рисунок 12. Разрушение опор моста

Механизм коррозии

- ✓ разрушение бетонного защитного слоя (влажный воздух, агрессивная среда)
- ✓ дефекты арматуры, разрушение бетона от ржавчины на арматуре

<u>Решение : использование в строительстве</u> <u>неметаллической арматуры</u>

- ✓ абсолютная коррозионная стойкость
- ✓ прогноз долговечности на срок > 75 лет
- ✓ увеличенный межремонтный период, снижение затрат на текущее содержание и ремонт

Области применения

- ✓ Жилищно-гражданское и промышленное строительство
- ✓ Горнодобывающая промышленность
- ✓ Дорожное строительство
- ✓ Мостостроение
- ✓ Армированные бетонные емкости и хранилища очистных сооружений и химических производств
- ✓ Объекты ЖКХ
- ✓ Канализация, мелиорация и водоотведение
- ✓ Укрепление береговой линии
- ✓ Морские и припортовые сооружения
- ✓ Фундаменты ниже нулевой отметки залегания
- ✓ Опоры контактной сети

Рис.3. Реставрация на реке Facia, Сухой док #4, Перл-Харбор, Гаваи

Рис.4. Барьер моста, Канада

Рис.2. Строительство моста, Канада

Рис.5. Туннельная железная дорога под рекой Темза, Лондон 12

Композитная сетка

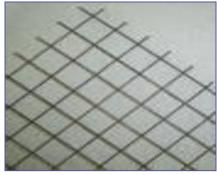


Рисунок 6. Композитная сетка

Изготовлена из углепластиковых, стержней с различным финишным покрытием

- ✓ двухосно ориентирована одинаковые механические свойства в продольном и поперечном направлениях
- ✓ низкий модуль упругости быстро и без последствий гасится вибрация
- ✓ сводообразование при нарушении бетонной конструкции сохраняет свою форму, предотвращает трещинообразование

13

Применение в различных слоях дорожной конструкции

✓ по земляному полотну для повышения его несущей способности, особенно при повышенной влажности и сезонных изменениях водно-теплового режима

 ✓ на основаниях дорог из крупнофракционных материалов или цементобетона в качестве трещинопрерывающей прослойки

Система Внешнего Армирования FibARM

Преимущества системы внешнего армирования на основе углеволокна

Система предназначена для ремонта и усиления строительных конструкций с целью устранения последствий разрушения бетона и коррозии арматуры в результате длительного воздействия природных факторов и агрессивных сред в процессе эксплуатации

Результатом применения являются:

- > Значительное увеличение сопротивления ударным и динамическим нагрузкам
- Повышение несущей способности транспортных сооружений, требующих усиления в связи с увеличением статической и динамической транспортной нагрузки
- Восстановление несущей способности сооружений различного назначения при усталости элементов конструкции, наличии трещин, прогибов, коррозии арматуры
- ▶Сохранение несущей способности конструкций при изменении конструктивных схем.
- >Повышение сейсмостойкости зданий и сооружений, находящихся в районах с угрозой землетрясений

Преимущества

- Сокращение временных затрат
- Сокращение трудовых затрат (отсутствие необходимости привлечения тяжелой техники)
- Возможность выполнения работ без остановки производства или движения транспорта.
- Сокращение расходов на ремонт.
- Увеличение межремонтного периода.
- Возможность исправления ошибок при проектировании и строительстве
- Не утяжеляет исходную конструкцию

Системы внешнего армирования на основе углеродного волокна

Области применения

Фермы

Потолочный проем

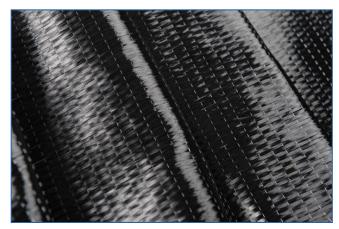
Стеновой проем

Стены

Колонны

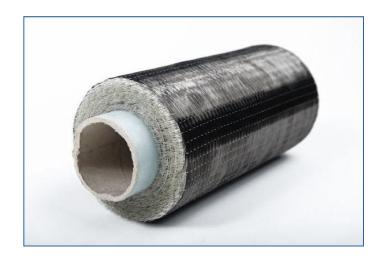
Плиты перекрытия

Углеродная ткань для системы внешнего армирования - инновационное решение


Ремонт поврежденных участков бетона и восстановление защитных слоев арматуры полимерцементным составом

→ Ремонт трещин по периметру диафрагм путем штробления и заполнения полимерцементным составом

 Антикоррозионная защита обнаженной арматуры грунтом-преобразователем ржавчины


Жнтикоррозионная защита арматуры в теле бетона мигрирующим ингибитором коррозии

Усиление продольных балок путем наклейки в растянутой зоне, в зоне опирания и в центре углеродных лент УОЛ-300 — эпоксидным двухкомпонентным компаундом

Элемент системы внешнего армирования – углеродная ткань (ленты)

- ≻Не коррозируют
- ≻Высокий предел выносливости
- ≻Низкий вес
- ≻Легкая укладка
- Жоэффициент температурного расширения ~ 0
- ≻Линейно упругие до разрушения

Усиление простенков и колонн в строящемся здании г. Москва

Чаша сгустителя, г. Соликамск 2000 г.

Совместно с фирмой "Уралгидроизоляция" осуществлено усиление чаши сгустителя для производства калийных удобрений и железобетонной подстропильной балки.

Для усиления использованы углеродные ленты ЛУ-30-2 отечественного производства. На днище чаши были выполнены две кольцевых наклейки — в зоне опорной балки из 6-ти монослоев (3-х радиальных и 3-х тангенциальных) и в зоне центральной опоры из 2-х радиальных слоев

Чаша сгустителя,

г. Соликамск

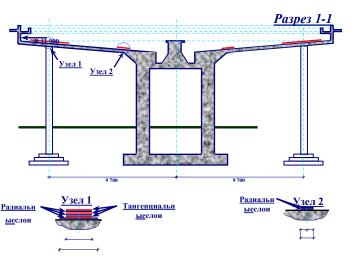


Рис.4. Усиление сгустителя

нагрузка

- •По результатам обследования чаши сгустителя определен дефицит арматуры.
- •Проведен прочностной расчет и и определены объемы усиления.
- •Выполнен проект усиления чаши сгустителя

Домодедово

Проемы в перекрытиях

Усиление проемов для эскалаторов в торговом центре

Мост через реку Кехта на автодороге Москва-Архангельск (2000-2001 г.г.)

Общие сведения о состоянии моста по результатам обследования от июня 2007года

■ Габариты моста: длина – 15,65м; ширина – 8,29 м

Год постройки – 1950;

■ Проектные нагрузки:Н-13;НГ-60(Д)

■ Число полос на дороге: 2

■ Категория дороги: IV

- Сведения о ремонтах: переустройство мостового полотна. Замена ограждений в 2003г.
- Статическая система: балочная, разрезная
- Тип несущей конструкции: ребристые балки с диафрагмами
- Ограничение временной нагрузки до 20 т изза повреждения конструкций моста

Дефекты, выявленные в результате обследования

Рарматура подвержена поверхностной коррозии

>дополнительный слой дорожной одежды создает непроектную нагрузку

Уимеются участки разрушения бетона, с обнажением рабочей арматуры

>продольные трещины (глубина трещин не выявлялась)

▶Недостаточная несущая способность из-за повреждений конструкций и несоответствие новым нормативным нагрузкам.

Основные работы по ремонту моста через ручей п. Татищево. Время затраченное на проведение работ 1 неделя.

Технико-экономическое обоснование эффективности усиления системой внешнего армирования

Калькуляция себестоимости ремонта моста (п.Татищево, Саратовская обл.) системой внешнего армирования углеродными лентами

Калькуляция себестоимости ремонта моста (п.Татищево, Саратовская обл.) традиционным методом усиления металлическими шпренгелями

Статьи затрат	Сумма, руб.
Проектирование	100 000,00
Материалы	417 756,00
Проведение работ	238 455,00
Итого:	
Сметная стоимость с НДС	756 211,00

Статьи затрат	Сумма, руб.
Проектирование	100 000,00
Материалы	649 823,00
Проведение работ	649231,00
Итого:	
Сметная стоимость с НДС	1399054,00

Экономический эффект

642843,00 рублей

45.9%

Несущая способность моста (п.Татищево, Саратовская обл.)

	обозначение нормативной нагрузки	значение единичной нагрузки, тонн
Проектная нагрузка до усиления	Н-13; НГ-60(Д)	48,00
Фактическая нагрузка до усиления		20,00
Фактическая нагрузка после усиления	AK-14	82,23

Увеличение несущей способности	62,23
--------------------------------	-------

Взрывные нагрузки

Не усиленная колонна

Усиленная колонна

Повышение сейсмостойкости конструкций

СВА повышает способность построек и конструкций выдерживать землетрясения с минимальными повреждениями за счет:

- •усиления колонн
- •усиления несущих стен
- •Укрепление междуэтажных перекрытий и покрытий, работающих как диафрагмы жесткости, обеспечивающие распределение сейсмической нагрузки между вертикальными несущими элементами.

Трубы, усиленные углеволокном

Преимущества композитных труб усиленных углеродным волокном

- Высокая химическая стойкость (к гипохлориту натрия, к морской воде, к кислотам).
- Внешняя и внутренняя защита от накопления статического электричества.
- Высокая несущая способность трубопроводов за счет внешнего армирование углеродным волокном.
- Увеличение несущей способности существующих водопропускных труб за счет протаскивания внутрь усиленных композитных труб (при практическом сохранении пропускной способности).

Диаметр труб от 300 до 2600 мм.

- Высокая коррозионная устойчивость.
- Возможность задавать необходимые физико-механические характеристики
- Гладкая поверхность внутреннего канала, низкие потери на трение транспортируемой жидкости
- Простота и низкая трудоемкость муфтовых соединений
- Низкий вес, оптимальная стоимость транспортировки
- Быстрый монтаж трубопроводов, минимальные финансовые и трудозатраты.

Монтаж: муфтовым способом, клеевое соединение встык

• 1)Муфтовое соединение –для стыковки труб используются разъемные и неразъемные соединения. Основной тип соединений – муфтовое, причем муфта изготавливается из отрезков труб, произведенных ранее, а во внутренней поверхности муфты вытачиваются канавки и пазы, в которые запрессовываются уплотнители –синтетические эластомеры специального профиля.

• 2)Для случаев, когда соединение труб должно выдерживать как осевые, так и радиальные нагрузки применяется неразъемное клеевое соединение встык.

Практическое применение

Программа внедрения ПКМ на предприятиях Госкорпорации «Росатом»

1.1. Наименование Программы.

«Программа внедрения полимерных композиционных материалов (ПКМ) на основе углеродных волокон на предприятиях атомной отрасли».

Утверждена генеральным директором ГК «Росатом» С.В.Кириенко 04.07.2011.

Период действия: 2011-2015

1.2. Основания для разработки Программы.

- 1.2.1. Протокол совещания у генерального директора Госкорпорации «Росатом» С.В. Кириенко от 26.01.2011 № 1-1/7-Пр.
- 1.2.2. Распоряжение Госкорпорации «Росатом» от 24.03.2011 № 1-4/34-Р.

1.3. Координатор Программы.

1.3.1. Координационный совет (КС) Госкорпорации «Росатом» по разработке и управлению Программой внедрения полимерных композиционных материалов на основе углеродных волокон (приказ Госкорпорации «Росатом» от 24.03.2011 № 1/220-П).

<u>Председатель КС</u> - Заместитель генерального директора Госкорпорации «Росатом» по развитию и международному бизнесу К.Б. Комаров.