ALSTOM Atomenergomash LLC developing ARABELLE™ based Turbine Islands for newly constructed and retrofitted nuclear power plants.

26.10.2011

A.M. Tsvetkov, ALSTOM Atomenergomash LLC

ALSTOM Atomenergomash LLC (AAEM)

AAEM LLC ALSTOM nuclear reference

26 ARABELLE[™] are now under construction or operation worldwide

Calvert Cliffs 3 1 x 1700 MW (engineering & long lead time item reservation)

Chooz B 2 x 1550 MW Civaux 2 x 1550 MW Flamanville 3 1 x 1750 MW

Ling Ao 3+4 2 x 1100 MW Hong Yan He 4 x 1100 MW Ningde 4 x 1100 MW Tianwan 5+6 2 x 1100 MW Taishan 2 x 1750 MW Fangjiashan 2 x 1100 MW Fuqing 4 x 1100 MW

AAEM LLC Participation in the new generation NPP projects

Distinctive features of new generation NPPs:

- increased thermal output of the reactor up 3300 MW
- increased electric output not less than 1255 MW
- increased efficiency of turbine generator unit up to 38 %
- application of ARABELLE[™] turbine generator unit with 2 LPC with LSB 1730 mm (69")
- application of HEAS and district heating 500 MW
- 3D model of the turbine hall

Main objectives:

- maximum fleet standardization of equipment
- reduced construction period
- reduced cost of construction and maintenance

AAEM LLC ARABELLE™ - technology for advanced NPP

Ling Ao Unit 1 (3000 rpm)

Ling Ao Unit 3 (1500 rpm)

The Customer's extra income in terms of reliability, availability, efficiency and installation and commissioning costs of the ARABELLE™ equipment versus full-speed equipment: from 360 M€ до 430 M€.

Parameter	Ling Ao 1	Ling Ao 3	Comment
Turbine speed	3000 rpm	1500 rpm	ARABELLE [™] is half-speed
Machine room size	99 x 59 m	99 x 59 m	Same footprint
Reactor thermal output	2904 MWth	2904 MWth	Same reactor conditions
Cooling water temperature	23 °C	24 °C	+ 1°C warmer for unit 3
Feedwater pumps drive	Turbine	Motor	Motor driven is nowadays standard
Output (net of feed- water pumping power)	Ref .	Ref . + 81 MWe	ARABELLE [™] architecture allows to boost the output by more than 8%

AAEM LLC ARABELLE[™] - standardized technical solutions

To Match Any Commercially Available Reactor

AAEM LLC – integrator of turbine hall

4-Pole generator

LP Rotor

pumps

Condenser

HP&LP **Feedheaters**

Circulating water pumps

- Maximum unit output:
 - 1550MW in operation
 - 1750MW under construction
- Longest last stage blade:
 - L = 1750mm
- Maximum steam turbine efficiency:
 - Gross efficiency > 37 %
- Maximum Steam turbine safety and reliability: - Reliability 99,97%
- Low construction costs thanks to compact design
- Low total operation cost
- The largest reference list

AAEM LLC ARABELLE™ - compact design

HIP turbine section

Length of turbine set – 37,5 m Weight of turbine set – 1880 t

AAEM LLC ARABELLE™ - design features

IP Exhaust

The 4-pole generator

Independent LP module

2- stage MSR

AAEM LLC High reliability indicators

ARABELLE[™] - Extensive positive feedback of experience

AAEM LLC General view of ARABELLE[™] based Turbine Island for new generation NPPs

The main properties:

- MSR installation 2 x 50%, Horizontal
- LP1/2 duplex heaters 2 trains, Horizontal
- LP3/4 heaters 1 train, horizontal.
- HP6/7 heaters 2 trains, horizontal.
- Turbine building footprint : Length = 91.9 m, Width = 57.2 m, Building height ~ 50 m.
- District heating heaters 3, located inside the TH building.
- Main cooling water pumps 2 x 50%.
- Condensate extraction pumps 3 x 50%.
- Main FW pumps 4 x 33%.
- Start-up FW pump 1 x 5%

Operation and maintenance indicators:

- Availability 97.5 %
- Reliability indicators 99.7 %
- Capability 1256 MW

AAEM LLC Outsourcing foreign manufacturers of NPP Turbine Hall equipment

AAEM – Plant Integrator

Outsourced manufacturers

AAEM LLC Heat sink, district heating and HEAS optimisation

Main circulating water pump

Condensate pump

AAEM LLC Heat sink optimisation effects Turbine hall integration for nuclear applications

Make the Best Use out of the Nuclear Reactor

Cold-End optimising is key for plant economic performance

Direct impact on Cost of Electricity

Net present value

AAEM LLC **ALSTOM's experience in conventional island equipment retrofit** World leader in component and integrated retrofits

Component retrofits

Integrated retrofits

780 cylinders retrofitted (320 retrofits of third party machines) Leading the concept of integrated retrofits for turbine island

Retrofit AAEM 2009. - 28/09/2009 - Page 15 ATOMEX Europe 2011, p. 15

AAEM LLC Retrofit. Design procedure

Lazer equipment utilization at site

ALSTOM ATOMENERGOMASH

AAEM LLC Retrofit. Design procedure

Interface analysis for steam turbines of the other manufacturers

AAEM LLC Turbine retrofits. Technical options

Original design

Double flow cylinder - reactive type blading

Various retrofit options implemented

Turbine producer not involved

Targeted output achieved and turbine problems cured thanks to the selected technical retrofit options

Single flow cylinder - reactive type blading

Inner casing components optimization

Generators retrofit Nuclear Rewind, Upgrade & Retrofit

ALSTOM ATOMENERGOMASH

AAEM LLC Retrofit. Consolidated data for the operated turbine

- K-1000-60/1500-2 1500rpm
- 1 x HP double flow module
 - 2 x 7 stages
 - Active type blading
 - Disc-and-diphragm design
 - Welded rotor
 - Полный подвод пара
- 3 x LP double flow module
 - 2 x 7 stages
 - Active type blading
 - Disc-and-diphragm design
 - Welded rotor

Last stage blade: 1450mm (57") на ϕ 2700mm – 18,9m²

AAEM LLC Balakovo NPP Retrofit HPC and LPC scope options

New HP cylinder

- Active type blading (disc-and-diaphragm design)
 - Finalization of the blading type active versus reactive depends on ratio expenses-profit
- 9 stages per flow
- Preliminary scope of works includes:
 - Bladed rotor
 - Diaphragm
 - Diaphragm sockets for 4-9 stages (operated 1-3 stage sockets of diaphragms remain unchanged)
- Welded rotor
- Full arc admission

New LP cylinder

- Reactive blading
- 12 stages per flow
- Preliminary scope of works includes:
 - Rotor
 - Stationary and moving blades
 - New sockets of blades inner casing shall remain unchanged (subject to additional estimation)
- LSB 57"
- Drum type welded rotor

Conclusion

- 1. Currently 33 out of 38 nuclear units rated 900 MW and over are equipped with low speed turbines. 26 of them are based on ARABELLE[™] technology.
- Tests of the 1000MW ARABELLE[™] Half-Speed Turbine Plant conducted in the 3rd power unit at Ling-Ao NPP (China) in 2010 have shown an electric power increase of above 8% versus full-speed double-flow turbine design given the same conditions on-site.
- According to Alstom/AAEM research, the Customer's extra income in terms of reliability, availability, efficiency and installation and commissioning costs of the ARABELLE[™] equipment versus full-speed equipment would vary in the following range: € 360 million per unit at the rate of € 25/MWh, or € 430 million per unit at the rate of € 30/MWh.
- 4. 2011 agreement is reached to involve AAEM with ARABELLE[™] technology for the participation in new nuclear units to be constructed in Russia and abroad.
- 5. Basing on Alstom engineering solutions, AAEM adds value to its competence in retrofitting equipment for nuclear power plants in operation.

Thank you for your attention!

