

ZPA Industry a.s.

- Introduction
- About ZPA Industry
- Reference

About the Company

- Engineering company
- Headquarters in Prague, Czech Republic
- Certification ISO 9001:2008
 - ČSN ISO/IEC 90003:2005
- 100 employees
- Offices and representatives worldwide

Main Activities

-		_		_	
	ur	П.		-	
		_,,	/ A Y 🕶		
				_	

Electrical Systems HV&LV, UPS

Field Instrumentation Sensors, Valves Servomotors

Fire and GAS
Detection System
ESD Systems

Control Systems PLC, PAC, DCS, PESS

HMI/SCADA Historian, PCIMS/MES Maintenance, Change Management

Industrial Communications
Wire and FO, Wireless CCTVEthernet RFI

Our Activity

- >> Consulting
- >> Feasibility Study
- >> Basic Design
- >> Detail Design
- >> Software Design
- >> Project Management
- >> Procurement
- >> Manufacturing/FAT
- >> Erection
- >> Commissioning/SAT
- >> Training
- >> Maintenance
- >> Service

We offer a system that "provides":

- Full control of LV, MV, HV switchyards (including communication via IEC61850, protections, etc.)
- Full control of auxiliaries (WT and WWT station, Waterpumping station, etc.)
- Optimization of process control
- Remote control
- Increased reliability of operation
- Minimizing of maintenance costs and downtime
- Maintenance of the system without shutdown
- Control room equipment
- Smoothing of the management and control (life extension technology equipment)

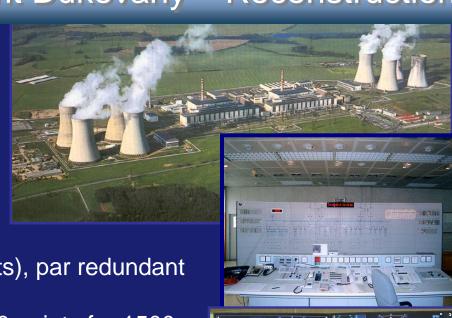
Our interest

 ZPA Industry a.s. has the interest in reconstruction of obsolete systems and participate in new projects in the development of nuclear energy (Volgodonsk, Leningrad nuclear powerplant)

Nuclear Power Plant Dukovany – Reconstruction

- modern processor redundant CS GE IP, including construction of new redundant optical communication lines
- complete modification central control room

Control system


- GE Fanuc Rx3i two redundant pairs, including 17 I/O units Rx3i, NiU block and Genius (1378 DI, 165 DO, 175 AI)
- CIMPLICITY visualization 07.05 (5000 points), par redundant server, 3 station operator
 - Historization Historian (4000 points for 1500 points of the exact time stamp of distinctive signals with 5ms)
 - Optical redundant communication bus

Scope of works and supplies

The project, dismantling and electro and I&C, new control system including application software, common control center for 4 blocks, communication network

Start / completion date : 10/2008 - 10/2010

Nuclear Power Plant Dukovany – Reconstruction

ZPA Industry a.s. has realized as the major subcontractor complete reconstruction of the electrical system, field instrumentation, control system and SCADA for 12 DGS (Diesel Generator Station)

- •CS controls all DGS in all operating modes
- •GE Fanuc Series 90-30 and CIMPLICITY HMI Plant Edition (SCADA system)

•compliance and IEC 880 for the development of software security systems for nuclear power

Basic data

CPU -120 Licenses Cimplicity HMI -14 screens - 330 analog. I/O - 2122 basic scan bus - 500ms binary I/O - 14980 com. process stations - 72

Commissioning

• Project - 3 stages (each stage - 4 DGS – each DGS 25 days) 2000, 2001, 2002

Power Plant Pocerady – Recovery CS GE Fanuc B3

- CS upgrade of unit with output 200MW
- shutdown block 15.8.2008
- trial operation started 8.11.2008
- complete handover 14.11.2008
- work on the part of I & C at shutdown block has taken only 2 months, after this time the block was again start up

Control system

- Redundant Controllers GE Fanuc PAC Systems RX7i with mirroring memory
- CPU controllers have been replaced by NIU block
- Communications Ethernet Redundant bus
- upgrade the SCADA CIMPLICITY HMI System
- new optical line for the bus Ethernet

Scope of work

- project documentation for part I & C
- delivery of the RS GE Fanuc PAC Systems RX7i and RX3i
- host application software, SCADA application software
- supply of switchboards
- delivery of fiber optic cabling and cable routes installation, start up

Power Plant Pocerady – Control Room

- each of five blocks a separate CS
- GE Fanuc Series 90-30 and 90-70
- CS of the block is divided into 43 functional units according to the technological operation of the PLC
- CS is applying to the management of automatic start-up and shutdown, control of technological variables, autonomous protection of technological units that have a redundant PLC
- CS allows shutdown block to a predefined state without operator intervention for each block is 6800 input / output
- CIMPLICITY HMI project architecture is built on a network solution from a single console access to projects of individual block everything in full operation)
- simplification of maintenance and elevation the overall overview of the projects operated

Power Plant Pocerady – Complete reconstruction

ZPA Industry as the main contractor has performed a Complete reconstruction of electrical systems, field instrumentation, control systems and SCADA system for all five blocks of 200 MW

Cimplicity I/O points: 34000 points

Cimplicity Servers/Viewers: 12/44

switchboards to 6kV: 410 switchboards HV switchboards: 130 switchboards GE Fanuc Series 90-30/90-70: 252 / 8 systems

 after CS implementation failure rate of 78% decreased = significant increase in reliability

Commissioning

Block No. 6 and 3 1993 Block No.2 1995

Block No.4 1996 (implementation within 3 months)

Block No.5 1998

References

Afghanistan **Bosna and Herzegovina Czech Republic** China India

Russia

Romania

Brasil Denmark Iran Iraq

Egypt Korea Saudi Arabia Serbia

Bulgaria **Finland Pakistan Slovenia**

Cambodia Germany Peru **Syria**

Barma Cuba Hungary **Poland** Mexico

References Power Generation CZ = ZPA

Pocerady	Reconstruction of BCOV GE IP	Dukovany	Control system DUS (complete reconstruction of control room of electrical equipment)	
Pocerady	New procedure of bolier for reducing CO and NOx B2,3,5,6	Dukovany	Optimalisation of switch-board ventilation of CS DG	
Pocerady	Service and regular maintenance - holding a permanent ES	Dukovany	Adaptation of algorithms feed pumps DG	
Dukovany	Optimalization of protection functions DG	Pocerady	Reconstruction of CS GE Fanuc B3	
Prunerov	Increasing the efficiency of boilers K3 and K6 in the EPRI	Pocerady	Direct speed operating CS Fanuc	
Prunerov	Upgrade of visualization of Cimplicity HMI CS	Pocerady	Servomotor cabinets for B3,B5	
Pocerady	Data transfer from gas EPC control system	Pocerady	Replacement of I.level condensate pumps B5	
Pocerady	Control System GE Fanuc modifications	Pocerady	Control system upgrade GE Fanuc B4	
Pocerady	Replacement of pit condensate pumps	Pocerady	Fire-stopping barriers of coaler bridges EPC	
Pocerady	IT security and plant-wide upgrade SCADA Cimplicity v.6.1, WINDOWS 2003 R2	Pocerady	Edits of control system Fanuc Pocerady power plant for conn.of control system	
Dukovany	Set-up of algorithm over revolution protections	Pocerady	Terminals connection of power plant TELEPOC and Units CS	
Dukovany	Dosing pumps of rust-inhibitor DG No.1-12	Dukovany	Exchange of eletrical equipment and ASCI of power plant DGS Dukovany - Technical support	
Pocerady	Modernizing of common oil economy	Dukovany	Service and technical support	
Pocerady	Technical support by setting of burning K2,K4	Pocerady	Delivery and instalation of archiving server UPV	
Pocerady	Set-up of control sysExchange of gen.breaker	Pocerady	Reconstruction of regulation TG 200MW	
Pocerady	Reconstr.of condensate pumps 2nd grade-unit 3-M&R	Pocerady	Exchange condensate pumps 2nd grade B4	
Pocerady	Repair of F&C system GE Fanuc	Dukovany	Inovation of bormeter 1. till 4. unit	
Pocerady	Stabilization of operating of descuming-dedging	Pocerady	Boiler K5 startup racionalization	
Dukovany	Dieselgenerators 12x3MW	Pocerady	Central Control Room	
Dukovany	Unit No.1-3, 4 partially - digitalisation of docs.	Dukovany	Controlled Zone - BCS drives and Swagelok	
Pocerady	Chemical Water Treatment Unit 5&6	Pocerady	Boiler K6 startup racionalization	
Pocerady	Condensate pumps II.level, B6	Prunerov	Setting of Prosonic 867	
Pocerady	Central Control Room, B2-B6	Pocerady	Coal Supply Machine reconstruction	
Pocerady	Coal Defrosting Tunel revision	Prunerov	Slug Transport EPR1 exchange	

Pocerady	Ventilator reconstruction	Pocerady	Remote Stoper Control, Dreging Station	
Pocerady	Technology blocks overhaul, B3	Prunerov	Sludge Bed USAK	
Pocerady	Power Supply for Control Systems	Prunerov	Y2K tests of Control Systems	
Pocerady	Coal Supply - CS tuning on Storing Mach.B	Pocerady	Control Room B6 to Control Room B5	
Pocerady	Overall Technology Control B6 adjustment	Pocerady	Electrical Generator Protections overhaul	
Pocerady	Reconstruction of 6kV Control Circuits, B6	Pocerady	Operator Station Modernisation UNIX-WinNT	
Pocerady	Modernisation of coal supply	Prunerov	Water Treatment System	
Pocerady	El.protections control&monitoring from BSIII.	Pocerady	Complete reconstruction of Unit 5 - 200MW	
Prunerov	CWT - Raw and Filtered Water overhaul	Pocerady	Fuel Chainfeeder Control overhaul	
Tisova	CWT - Neutralisation Station overhaul	Pocerady	Plate Caps Control System overhaul	
Prunerov	Fly Ash Handling on EPRU I	Prunerov	Cooling Overvoltage Protection	
Tisova	CWT - Waste Water Measurement	Pocerady	Excavation Station	
Prunerov	Dust and Soot Collection on EPRU II	Pocerady	Conveyor Bridge ZPD-200	
Prunerov	Belt Transport of Coal Line A	Prunerov	Boiler K5 Denitrification	
Tisova	Mixing Device ERICH II	Tisova	RGO Unit 6, MODIN regulation compensation	
Tisova	RGO Unit 6, Pressure Sensors	Tisova	RGO Unit 6, Gas Burners	
Tisova	RGO Unit 6, Equipment DANOX	Tisova	RGO Unit 6, Control System	
Tisova	CWT - Cleaner	Tisova	Belt Trasport - Stabilizer	
Pocerady	Stabilizer Production	Pocerady	Pumping Station of Cooling Water	
Tusimice	Fly Ash Transport	Tisova	Electric Feeders Reconstruction II.	
Prunerov	Coaling II.Phase	Prunerov	Desulphurization of Units 1-4	
Pocerady	Feeding Water Sampling	Pocerady	Inner Coaling	
Prunerov	Desulphurization of Unit 5	Tisova	Electric Feeders Reconstruction I.	
Prunerov	Unit 3 Denitrifi cation	Tusimice	Gathering Machine	
Pocerady	Chain Fuel Feeders	Pocerady	Continues Temperature Monitoring	

References Power Generation - world

CH,Shen Tou	Technical support and design	BIH,Ugljevik	Monitoring System on 300MW	
CH, Shen Tou	Unit 4x200MW	CU,Nuevitas	Unit 3x125MW	
EG,Kafr	Dawar Unit 110MW	VT, Da Hang	Da Hang Power Station	
AR, Lujan	Unit 1x250MW, Lujan de Cuyo	Albania	Hydro Power Korca 1x3MW	
Barma Hydro	Power Tha Fon 3x6MW	Cambodia	Hydro Power Chak Angre 3x6MW	
UAE Abu Dhabi	Dhabi 2x150MW	Syria Homs	4x64MW	
Peru Iguitos	2x10MW	Peru Pucallpa	2x10MW	
Albania Fieri	1x60MW	Brasil	Sotelca 2x125MW	
Bulgaria	Sofia 1x30MW	Egypt	Beida Dyers 3x6MW	
Hungary	Inota 2x125MW	Romania	Doicesti 2x100MW	
Cuba	Nuevitas 3x64MW	Egypt	Deshna 2x4,5MW	
Bulgaria	Plovdiv 1x30MW	Detmarovic	Units 4x200MW	
Brasil	Port Alegre 3x8MW	Cuba	Regla 1x64MW	
Cuba	Cuba Hector Pavone 1x33MW	Denmark	Amager 1x125MW	
Romania	Ludus 5x100MW	Pakistan	Guddu 2x110MW	
Algeria	Skikda 2x137MW	Argentina	Rio Turbio 2x110MW	
Brasil	Igarape 1x125MW	Finland	Hanasaari 2x114MW	
India	Madras 1x110MW	Bangladesh	Khulna 1x60MW	
Korea	Unggi 2x50MW	Romania	Brazi 2x200MW	

THANK YOU FOR YOUR ATTENTION.